H(0)=-16t^2+65

Simple and best practice solution for H(0)=-16t^2+65 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(0)=-16t^2+65 equation:



(0)=-16H^2+65
We move all terms to the left:
(0)-(-16H^2+65)=0
We add all the numbers together, and all the variables
-(-16H^2+65)=0
We get rid of parentheses
16H^2-65=0
a = 16; b = 0; c = -65;
Δ = b2-4ac
Δ = 02-4·16·(-65)
Δ = 4160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4160}=\sqrt{64*65}=\sqrt{64}*\sqrt{65}=8\sqrt{65}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{65}}{2*16}=\frac{0-8\sqrt{65}}{32} =-\frac{8\sqrt{65}}{32} =-\frac{\sqrt{65}}{4} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{65}}{2*16}=\frac{0+8\sqrt{65}}{32} =\frac{8\sqrt{65}}{32} =\frac{\sqrt{65}}{4} $

See similar equations:

| -2.6x+8=8.8x-4 | | 3n+4=-4/3 | | 15+3(x+8)=9 | | n/8-3=18 | | 8y+888=0 | | (2x+8)+(2x-2)+x=180 | | (2x+10)+(3x-2)=18 | | 5x+2=−16 | | 1-2.5(3-x)=#.5 | | 15x+50=0 | | (10c-43)+(-c+52)=90 | | 2x+198=0 | | (4c+25)+(-9c+110)=90 | | 3(2x+7)=6x+18 | | 8a-3=6a+27 | | 15+3(x+8)/9=9 | | (z-514)=(-4z-9) | | 15x-6x-3x=20-8 | | (x-424)=(-3x-12) | | 6n+4=12+2n | | 4w-8=3w+6 | | (6m+28)+(7m+54)=(2m+104) | | ¼•n=4 | | 3q+–2=–8 | | 2=g4−1 | | (-1m+87)+(-10m+163)=(-10+242) | | 17+2x=55 | | 5x(17)-25=180 | | 7-(5t-3)=-25 | | (7z+67)+(3z+132)=159 | | Y=2x^2+10x-6 | | 35=12w-7w |

Equations solver categories